An On-line Training Radial Basis Function Neural Network for Optimum Operation of the UPFC
نویسندگان
چکیده
The concept of Flexible A.C. Transmission Systems (FACTS) technology was developed to enhance the performance of electric power networks (both in steady-state and transient-state) and to make better utilization of existing power transmission facilities. The continuous improvement in power ratings and switching performance of power electronic devices together with advances in circuit design and control techniques are making this concept and devices employed in FACTS more commercially attractive. The Unified Power Flow Controller (UPFC) is one of the main FACTS devices that have a wide implication on the power transmission systems and distribution. The purpose of this paper is to explore the use of Radial Basis Function Neural Network (RBFNN) to control the operation of the UPFC in order to improve its dynamic performance. The performance of the proposed controller compares favourably with the conventional PI and the offline trained controller. The simple structure of the proposed controller reduces the computational requirements and emphasizes its appropriateness for on-line operation. Real-time implementation of the controller is achieved through using dSPACE ds1103 control and data acquisition board. Simulation and experimental results are presented to demonstrate the robustness of the proposed controller against changes in the transmission system operating conditions.
منابع مشابه
Improving Accuracy of DGPS Correction Prediction in Position Domain using Radial Basis Function Neural Network Trained by PSO Algorithm
Differential Global Positioning System (DGPS) provides differential corrections for a GPS receiver in order to improve the navigation solution accuracy. DGPS position signals are accurate, but very slow updates. Improving DGPS corrections prediction accuracy has received considerable attention in past decades. In this research work, the Neural Network (NN) based on the Gaussian Radial Basis Fun...
متن کاملFast Voltage and Power Flow Contingency Ranking Using Enhanced Radial Basis Function Neural Network
Deregulation of power system in recent years has changed static security assessment to the major concerns for which fast and accurate evaluation methodology is needed. Contingencies related to voltage violations and power line overloading have been responsible for power system collapse. This paper presents an enhanced radial basis function neural network (RBFNN) approach for on-line ranking of ...
متن کاملArtificial Neural Network Involved in the Action of Optimum Mixed Refrigerant (Domestic Refrigerator) (TECHNICAL NOTE)
This analysis principally focuses on the implementation of Radial basis function (RBF) and back propagation (BPA) algorithms for training artificial neural network (ANN) to get the optimum mixture of Hydro fluorocarbon (HFC) and organic compound (Hydrocarbons) for obtaining higher coefficient of Performances (COPs). The thermodynamical properties of mixed refrigerants are observed using REFPROP...
متن کاملNovel Radial Basis Function Neural Networks based on Probabilistic Evolutionary and Gaussian Mixture Model for Satellites Optimum Selection
In this study, two novel learning algorithms have been applied on Radial Basis Function Neural Network (RBFNN) to approximate the functions with high non-linear order. The Probabilistic Evolutionary (PE) and Gaussian Mixture Model (GMM) techniques are proposed to significantly minimize the error functions. The main idea is concerning the various strategies to optimize the procedure of Gradient ...
متن کاملOn the use of back propagation and radial basis function neural networks in surface roughness prediction
Various artificial neural networks types are examined and compared for the prediction of surface roughness in manufacturing technology. The aim of the study is to evaluate different kinds of neural networks and observe their performance and applicability on the same problem. More specifically, feed-forward artificial neural networks are trained with three different back propagation algorithms, ...
متن کامل